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INTRODUCTION 

This work proposes a theoretical change in 

Newton’s Law of Gravity (NLG) which 

obviates the need to invent dark matter forces to 

explain the motions of stars in galaxies. This 

law is covered in Part 1.Also, an important 

obvious corollaryC1is offered as an immediate 

consequence which is especially apropos to the 

dark matter problem. L1/C1is then applied in 

Part 2 to orbiting bodies and to Mercury in 

particular. Following this the dark matter 

problem is resolved in Part 3. 

REFORMULATING NLG AS L1 

Introduction 

The theory in this work requires the 
reformulation of NLGasL1by making a very 

small, intuitive modification involving v/c. This 

law has virtually no effect on the motion of 

bodies in the short run, but a major effect over 
extremely long time spans. An important corollary 

C1 is added as an obvious application which is 

useful in resolving the dark matter problem. 

The Replacement of NLG with L1 

In this section NLG will be modified by lawL1, 

and corollary C1 will be added as an immediate 

consequence. This theory examines the force 
exerted by a gravity “ray” sent at time t by a 

moving body of mass M and subsequently 

received by a moving body of mass m. In the 
analysis IFR(t) is defined as the inertial frame 

of reference of M at the ray emission time t. The 

term, “ray”, is used here to indicate the gravitational 
field emitted over an infinitesimal period of 

time. The following assumptions are made: 

Assumptions 

 All calculations are based on IFR(t). 

 The ray travels from M to m at the velocity of 

light.   

 The exerted force from M on m is in the 

opposite direction of the movement of the 
ray when it hits m. 

 There is a reduction in this force when m is 

moving away from and v.v. when it is 

moving toward M.  

When M and m are permanently stationary in a 

given inertial frame of reference, say IFR(t) = 

IFR0, then the gravitational force, f, is given by 

f=f0, wheref0 obeys NLG for stationary bodies, 

as follows: 

f0= - GMmu / r 
2                                                                

(1.2.1) 

In this formula r is the constant vector running 

from M to m as measured in IFR0, and u is a 

unit vector given by u = r/r. The force is 

attractive in the direction of -u. Now suppose in 

the more general situation that a ray is sent at 

time t from a moving body M to a moving body 

m, and the inertial frame of reference of M at the 

instant of the emission is IFR(t). Further 

suppose the ray travels at velocity c and hits m 

at a future position r(t+Δt)at time=t+Δt, all as 

measured in IFR(t).It is assumed the exerted 

force, f, at the instant of impact is in the 

direction of -r(t+Δt). If at this instant m is 

traveling at velocity v(t+Δt), which is at an 

angle φ to r(t+Δt). The following general law of 

gravity, L1, is postulated: 
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Law L1 

f = f0( 1– αv cos(φ) /c  )                             (1.2.2) 

In the above formulation α is a dimensionless 

constant which is assumed to be positive. This 

constant is discussed but not specifically 
evaluated in this work. Based on the analysis of 

the planet Mercury it will be clear that α≤1. 

From (1.2.2) it is convenient to define V as follows: 

V= v cos(φ)                                                (1.2.3) 

Then (1.2.2) can be restated as follows: 

Law L1 

f = f0( 1– α V/c  )                                        (1.2.4) 

It is noted that V is the scalar component of the 

velocity of m in the direction of the ray at the 

instant of impact, and that all quantities are 
evaluated in IFR(t). In(1.2.3) φ is the angle 

between r(t+Δt)and v(t+Δt). If at the instant of 

impact v is precisely in the direction of r, then 

φ=0 and V=v. Conversely, if v is in the-r 
direction, then φ=π and V=-v. On the other 

hand, if v is orthogonal to the ray, then V=0 and 

the exerted force is f0.It is assumed that V/c is 
small, so that f is a linear perturbation of f0.In 

the unusual event that V/c happens to be large, it 

may be that (1.2.4) may need to be amended by 

adding on nonlinear terms.  

It is seen thatL1 differs very little from NLG. 

But the miniscule difference will prove to be 

useful in explaining the motions of planets and 
stars over very long time spans. It is important 

to note that L1 does not deal with situations 

involving the effect of gravity on photons, 
where V/c~1.It is also noted that the connection 

between L1and the General Theory of Relativity 

(GTR), if any, is not specified. Both theories 

may be valid, and perhaps they will somehow be 
combined at some future date. 

To better understand L1think of the gravitational 

field emanating from M and hitting m later on. 
In general, the amount of field flowing past m 

varies with the velocities of the two bodies. It is 

argued that the gravitational force stemming 
from the field that M exerts on m will be less if 

m is moving with the field than if it is moving 

against it. This idea explains the negative term 

in (1.2.4), where it is assumed that α>0. These 
comments lead to the following important 

corollary C1: 

Corollary C1 

When m is moving away from M at the ray arrival 

(i.e., cos(φ)>0), the gravitational attraction is 

reduced due to the α term and therefore m is 

slowed less than under NLG. Alternatively, 
when m is moving toward M, the gravitational 

attraction is increased and therefore m is 

accelerated more than under NLG. Thus, in 
either case the speed of m is increased relative to 

what it would be under NLG. 

FromC1 planets and stars moving in any 

direction, other than in a circle, under the 
primary influence of a single large mass M will 

move faster everywhere than they would if only 

NLG were in effect. It is noted that the energy 
to increase the velocity of m comes from the 

gravitational field of M and not from any dark 

energy or dark matter forces. As will be explained 
in more detail later on, this L1/C1 combination is 

the basis behind the solution to the dark matter 

problem. 

Based on the following analysis, it is tempting 
to conjecture that α=1. First, assume that the 

gravitational force on m is f, which differs from 

the Newtonian force f0 as a result of the amount 
of the gravitational field flowing by it, as 

follows:  

f = f0 x (gravity flow past m) / (gravity flow 

when V=0)                                                 (1.2.5) 

In time dt, the actual flow by m is proportional 

to (c-V)dt, and the flow when V=0is 

proportional to cdt. Thus, (1.2.5) implies that:  

f /f0  = (c-V)dt / cdt= 1 – V/c                      (1.2.6) 

From (1.2.6) and (1.2.4)it might be conjectured 

that α=1. While this may in fact be true, the 
upcoming analysis concerning the motion of the 

planet Mercury makes it more likely that α<<1. 

Similarity between Gravitational and EM Fields 

In Aucamp [1] a theory of electromagnetism 
(EM) is developed which is essentially identical 

in formtoL1, at least in the linear perturbation 

case involving small V/c. Instead of f0 in (1.2.1), 
a similar coulomb law equation for the force 

F0exerted between two stationary charges, q1 

and q2 is given as follows: 

F0 = q1 q2  u  / (4πɛ0 r 
2 
)                             (1.3.1) 

Then the linear lawL1for the electric field force 

F is postulated as: 

F= F0( 1– αv cos(φ) /c  )                           (1.3.2) 

This force law is very similar to the proposed 

L1gravitational force law. Defining V=v cos(φ) 

yields the same form as(1.2.4): 

F= F0 ( 1– αV /c  )                                     (1.3.3) 



A Solution to the Dark Matter Problem 

Open Access Journal of Physics V3 ● 14 ● 2019                                                                                               29 

In Aucamp[1] the following conclusions are 

theoretically and experimentally shown: (a) 
magnetic forces are in reality electric field 

forces,(b) Maxwell’s force laws and his equation 

for c can be derived from (1.3.3), and (c) α=3/2. 
Though the value of α is mathematically and 

experimentally shown to be 3/2 for EM forces, 

this doesn’t mean the same value applies to 

gravitational forces because these two fields are 
different. 

VIRTUALLY ELLIPTICAL ORBITS 

Introduction 

L1/C1 will be applied here to the problem of 

determining the velocity and orbit time of a 

planet of mass m circling a star of mass M in the 
case when the motion is virtually elliptical. The 

analysis applies equally well to the motion of a 

star orbiting a black hole center in a galaxy. The 
derived results will be informative in the study 

of the dark matter problem later on, where more 

details will be provided besides those found 
here. For convenience, m will be termed a planet 

and M a star. 

It is assumed the planet is situated at the ellipse 

perihelion and is all set to execute an almost 
perfect elliptical orbit. It will now be shown 

how a positive value of α increases the velocity 

everywhere and therefore decreases the overall 
transit time. Consider a planet orbiting a star in 

an almost perfect ellipse and suppose v=v0 is the 

current velocity at the perihelion. At this point v 

is orthogonal to the radius from M, where  

cos(φ)=0,V=0, and vis at a maximum. Now let 

α>0 come into play, and let Δv be the increase 

in the velocity over the upcoming orbit, where 
Δv=0ifα=0. It is noted that Δv is very small 

because αV/c is assumed to be small. Suppose 

also thatT0is the orbit time if α=0, and let T0+ΔT 
be the time to complete the upcoming orbit if 

α>0.As Δv>0 because of C1, then it will turn out 

that ΔT<0.The derived results will then be 

applied to the movement of the planet Mercury. 

Though the following assumptions concerning 

Kepler’s laws are not strictly true because α>0, 

it is argued they are sufficiently true to warrant 
their adoption because the orbit path is assumed 

to be virtually elliptical, where only a very small 

perturbation is due to the α term in L1. The 
effects of other perturbations are neglected here, 

such as those due to the forces exerted by other 

planets or to GTR, if any. As these effects are 

assumed to be small, they can presumably be 
added on later to get a total. The following 

assumptions will be made:  

Assumptions 

 The orbit is almost precisely an ellipse. 

 M is essentially stationary, where M>>m. 

 The effects of other bodies and GTR are 

neglected. 

 L1/C1 is valid. 

Though it is assumed the movement of mis 
almost precisely along the path of a pure ellipse, 

it is also assumed an imperceptible force due to 

α>0speeds up the body relative to that as 

determined by NLG. Though the movement is 
altered very slightly away from a pure ellipse, it 

is assumed here that the total velocity increase, 

Δv, over the orbit is essentially the same as it 
would be if the path were a pure ellipse. That is, 

it is argued that the assumption of m moving on 

the ellipse rather than slightly off it will not 

significantly affect the calculation of Δv. 

Introduction to the Theory of Δv over One Orbit 

Assume a planet of mass m orbits a star of mass 

M, but the results apply equally to a star orbiting 
a black hole. The motion is depicted below in 

Figure 1, where the movement is counter 

clockwise around the star which is fixed at 
F1.The two foci are at F1, where the assumed 

stationary star is located, and at F2. Both foci are 

equidistant from O, and the distance from O to 
each is ɛa, where ɛ is the eccentricity. The semi-

major axis with length=a is shown as the 

horizontal line from the center O to A2 on the 

left and equally from O to A1 on the right. The 
perihelion is at A2, and the aphelion is at A1.The 

semi-minor axis of length b runs vertically from 

O to B1 and equally from OtoB2. An arbitrary 
point with coordinates x and y with respect to 

F1is shown at C1, which is at an angle θ to the 

major axis. The radii r1 and r2 are the distances 

fromF1to P1and F2 to P1, respectively. The 
pointP2 is also indicated as the symmetrical 

cousin of P1. The counter-clockwise distances 

around the ellipse to any given point, such as P1, 
is measured from A1. 

 
Figure1. Purely Elliptical Orbit 



A Solution to the Dark Matter Problem 

30                                                                                               Open Access Journal of Physics V3 ● 14 ● 2019 

Certain properties of ellipses are well-known 

and will not be derived here. Three of them are 
as follows: 

r1 + r2 = 2a                                                 (2.2.1) 

(x - ɛ a)
2
/a 

2
  +  y

2
/b

2
  = 1                           (2.2.2) 

b = a(1-ɛ
2 
)

1/2
                                              (2.2.3) 

From (2.2.3) it is seen that the ellipse is a circle 

when ɛ=0.Since v/c is assumed to be very small, 

L1as given by (1.2.4) will be used to solve the 
problem. As the star is assumed to be virtually 

stationary, this greatly simplifies the evaluation 

of the force f exerted by it on the planet because 
the gravitational field in this case is essentially 

non-varying. If m were also motionless, which it 

is not, then the force, f0(t),that M would exert on 
m would be given by(1.2.1) as follows: 

f0(t) = - G Mmu(t) / r 
2
(t)                           (2.2.4) 

In (2.2.4) r(t) is the vector from the star to the 

planet at time t, and u(t)=r(t)/r(t). However, as 
m is in fact moving, then from (2.2.4) and L1the 

force that the star exerts on the planet is given as:  

f(t)=- G Mmu(t) [1-αV/c] / r 
2
(t)                (2.2.5) 

It is noted that V=v cos(φ), where v is the 

counter-clockwise scalar velocity of the planet 

with respect to the assumed stationary star and φ 

is the angle between r and v, as shown in Figure 

1. It is also noted that dropping the term 

involving αV/c in (2.2.5) results in a purely 

Newtonian force that yields a purely elliptical 
path. As V/cis assumed to be very small, and as 

it will be argued later α≤1, then f(t)will differ 

from f0(t)by only a miniscule amount. This 
miniscule difference, call it Δf(t), is what is of 

importance in this study. It is defined as follows: 

Δf(t)=f(t)-f0(t)= G Mmu(t) [ αV/c ] / r 
2
(t) (2.2.6) 

As V=v cos(φ),plugging this into (2.2.6) and 

noting that u (t) depends only on r yields: 

Δf = G Mmu(r)αvcos(φ )/(c r 
2
)                 (2.2.7) 

Since the component of Δf in the direction of 

increasing counterclockwise s along the ellipse 

is being sought, and since the scalar value of 

u(r)in this direction is cos(φ), then the scalar 

increase, call it ΔF, in the force over and above 

the Newtonian force is found from (2.2.7) as 

follows: 

ΔF=G Mmαvcos 
2
(φ )/(c r 

2 
)                     (2.2.8) 

It is concluded from (2.2.8) that ΔF>0 
everywhere except where cos(φ )=0. Thus, m 

speeds up at every point where cos(φ)≠0 relative 

to the pure Newtonian motion, and this conclusion 

agrees with corollary C1.Note also that the ΔF’s 

at two related points such as P1 and P2 in Figure 

1are equal, and it is therefore clear that the 

increase in velocity over and above NLG will 

be the same over segments A1A2andA2A1. 

Evaluation of Δv from ΔF 

In this section the velocity increase, Δv, in one 

virtually elliptical orbit as measured from 

perihelion to perihelion will be analyzed from 

ΔF as given by (2.2.8). It is reiterated that when 

α=0 the orbit is a standard ellipse and that 

Δv=0. Accordingly, Δv is totally due to ΔF. It is 

therefore convenient in the analysis to neglect 

the classical Newtonian force and just consider 

the ΔF perturbation. Then from dv=fdt/m: 

Δv =  𝛥𝐹dt / m                               (2.3.1) 

Inserting ΔF as determined by (2.2.8) into (2.3.1) 
yields, after a little algebra, the following: 

Δv = [αG M / c]  cos
2
(φ)vdt/ r 

2
   (2.3.2) 

The closed integral in (2.3.2) is carried out over 

one orbit. As v is in the direction of the ellipse, 

then vdt=ds, and (2.3.2) becomes: 

Δv =[αG M / c] cos2
(φ) ds/  r 

2       
        

  
(2.3.3) 

It is convenient to normalize all variables 

involving length by dividing them by the semi-

major axis length, a. When this is done, (2.3.3) 

becomes: 

Δv= [αG M/(ac)] cos
𝐿

−𝐿
2
(φ) dL/ R

2
           (2.3.4) 

In this formulation the closed path integral is 

that of a “standard ellipse” with a semi-major 

axis of a=1. The total path length is 2L, which 

unfortunately is not analytically available as a 

function of ɛ(other than via an infinite series or 

by numerical integration). The dimensionless 

variable, R, is defined as R=r/a. As the integral 

in (2.3.4) is only a function of the eccentricity ɛ, 

let I(ɛ) be its value. Then: 

Δv=[ I(ɛ)αG M]/[ac ]                                 (2.3.5) 

where 

I(ɛ) =  cos
𝐿

𝐿 
2
(φ) dL/ R

2
                             (2.3.6) 

The value of I(ɛ)can readily be found via a 

computer program by numerical integration for 

any value of ɛ. For Mercury, ɛ=.20563069, and 

I(ɛ) is: 

I(ɛ)=I(.20563069)=.1379675126(Mercury)    (2.3.7)   

It is noted from (2.3.5) that the increase in 

velocity will result in a precession, which is 
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over and above that from other causes, such as 

from other planets or from GTR. All these 
causes, including the use of measuring devices 

on the Earth, make it difficult to experimentally 

determine the precession due to Δv alone. 

Determination of ΔT  

In this section the change ΔT in orbit time T as 

measured from the initial perihelion to next 
perihelion will be determined as a function of α. 

The reason ΔT is of interest here is because it 

contributes to the precession of the planet. As 

Δv>0, then ΔT<0. It is known from Kepler’s 
laws that: 

a = [GMT
2
/(4π

2
) ] 

1/3                                                     
(2.4.1) 

It is also known that the initial velocity v0 at the 
perihelion is given by: 

v0=(2πa/T) [(1+ɛ)/(1-ɛ)]
1/2                                      

(2.4.2) 

From (2.4.1) the following obtains for small ΔT: 

ΔT = - T
2
Δv / {2πa [(1+ɛ)/(1-ɛ)]

1/2
}           (2.4.3) 

As all the quantities in (2.4.3) are known, ΔT 

can be determined. From (2.3.5) and (2.4.3), 

after cancelling terms and rearranging, the result 
is: 

ΔT / T = -Δv / v0                                   (2.4.4) 

Thus, under the assumption that the movement 
is virtually along the ellipse, the infinitesimal 

fractional decrease in orbital time equals the 

infinitesimal fractional increase in orbital 

velocity, all as measured at the perihelion. 

Application to Mercury 

In this section Δv as given by (2.3.5) and ΔT by 

(2.4.4) will be found as a linear function of α for 
the planet Mercury, which has a relatively high 

eccentricity as compared to the other planets in 

the solar system. The constants that are used (in 
MKS) are:  

G = 6.6720 x 10
-11

 

M=1.98910 x 10
30

 

c=2.99792x10
8
 

ɛ =.20563069 

T =7.600435x10
6
sec (87.968 Julian days) 

a = 5.79086 x 10
10

 

v0 = 5.897672 x 10
4
 

From a computer program: 

I(ɛ)= .1379677126 

S=3.599733x10
11

 meters 

The orbit time of 87.968 Julian days is viewed 
here as a fixed constant in this study, and v0 and 

a are determined accordingly from Kepler’s 

laws. On inserting the above values into (2.3.5), 
the following obtains: 

Δv =1.05469165 α(meters/sec)          (2.5.1) 

Δv / v0= 1.78831863x10 
-5
α                   (2.5.2) 

Then, from (2.4.4): 

ΔT/T = - Δv / v0=- 1.78831863 x10 
-5 

α     (2.5.3) 

Accordingly, based on the known assumed 

value of T for Mercury: 

ΔT= - 1.78831863 x10 
-5 

Tα = -135.919998 α                                                                                                                 

                                                                   (2.5.4) 

From these results, the precession of Mercury 
per orbit due to the orbital time decrease from 

L1isgiven as: 

Precession (radians/orbit) = v0|ΔT|/ r0 = 1.742 
60209 x 10 

-4
α                                 (2.5.5) 

It is noted here that ΔT<0, so that the precession 

is positive, and |ΔT| must be used above in 

(2.5.5), where r0=a(1-e). As 1 radian=206, 
264.806 arcsec, then the precession in arcsec is: 

Precession (arcsec/orbit) = 35.9437472 α    (2.5.6) 

Over one century, there are N=415.52078 orbits. 
Then the approximate precession per century 

due to the L1 speedup is very close to the 

multiple of N times the precession/orbit, so the 

precession in arcsec/century is given as 
(415.52078)x(-35.9437472)α=14924.1297α. It 

is interesting that astronomers have calculated 

the actual precession of Mercury due to all 
causes with respect to an ICRF to be about 574 

arcsec. If this result is accurate, then it is 

surmised that α<<1.This is in contradiction to 
the possibility that α might be unity. As there 

are many twists and turns in the above analysis 

and computer program, and as the astronomical 

evaluation is based on NLG, it is uncertain at 
this point whether to assert anything definite 

about α, especially concerning the α=1. 

Application to Gravity Waves 

From L1 gravity fields travel at c. Consider, for 

example, what happens when one star collides 

with another star. Instantaneously, the resulting 

two gravity fields undergo huge transitions 

which travel out into space at the speed of light. 

Based on the weakness of these fields millions 

of light years away, it is impressive that 

scientists have found a way to measure their 

presence. It is noted that these experiments 

assume that gravity fields travel at c, which is 

likewise assumed inL1. 
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DARK MATTER 

Introduction 

The strange movement of stars in galaxies has 

been a perplexing and unresolved mystery for 

quite a while now, and the term, “dark matter”, 
has been coined to indicate this lack of 

understanding. It is the view of many scientists 

that there must be some form of matter out in 
space that is responsible for these movements, 

though none has ever been detected. This problem 

primarily arosefromthe1975workof Vera Rubin 
on rotation curves in the Andromeda galaxy and 

the subsequent publication in 1976 by the team 

of Rubin, Roberts, Graham, Ford, and Thonnard 

[2]. One of the conclusions in that study was 
that stars in galaxies inexplicably often move in 

spiral patterns around a black holec.g., that their 

velocities tend to increase with the distance D 
from it, and that they then tend to level off. This 

behavior is in direct contradiction to NLG, 

where orbital velocities decrease with greater D, 
as is the case with planets in our own solar 

system. Subsequent studies by others have 

found similar results. The theory given here is 

based solely on L1/C1/O, where the attached O 
refers to the orbital material in Part 2. The 

analysis will be directed toward providing 

reasons for these observations without the need 
for inventing dark matter forces. 

Intuitive Solution 

Based on L1/C1/O the answer to the dark matter 

problem can be seen intuitively, as discussed 

below. The remaining sections will then be 

devoted to adding back-up theory. First, from 

L1/C1/O the velocity of a given star moving 

around a black hole of mass M will keep 

increasing at all points in its motion relative to 

what it would be if the speed were solely based 

on NLG. This is the case both when the star is 

slowing down as it moves away from M and 

when it is speeding up as it moves toward it. 

Thus, if the star happens to be moving in some 

kind of a complete orbit, there is a net velocity 

gain over it. This gain is added to all the speeds 

in the next orbit. Therefore, the orbital speeds 

increase along any radius line extending 

outward from the black hole center. This is one 

of the key observations of Rubin.   

Second, the added force provided by L1/C1/O 

indicates the moving star will be pushed outside 

the locally elliptical orbit at all points where the 
velocity is not orthogonal to the gravitational 

ray. However, as the additional force decreases 

with the distance D from M, then the Δv orbital 

gains become less and less. Thus, on the one hand 

there is an increase in velocity and a movement 
away from a pure ellipse which results in a 

spiral path which eventually escapes into outer 

space. On the other hand, since the velocities are 
leveling off, this indicates a movement that 

becomes more and more circular. Which of 

these two eventualities, whether a circle or a 

spiral, wins out in the long run is deemed to be a 
function of the current state, (r, v, and M), which 

is not ascertained in this work. To make matters 

even more complicated, M may increase in time 
as more and more material is added to it. If the 

spiral wins out, then according to classical 

physics the final escape path initially starts out 
as a parabola. Subsequently, from L1/C1 the 

small increase in speed over and above NLG 

results in a slightly hyperbolic path. 

The details covered in the remainder of this 
study are offered primarily as back-up filler 

material to the above intuitive remarks. While 

elliptical orbits are well-understood, the details 
in the case when the orbits are decidedly non-

elliptical are more complicated, and the analysis 

in this latter case will therefore be mainly 

qualitative. The many problems which preclude 
more specific mathematical equations in the 

decidedly non-elliptical case include: (a) the 

value of α is currently unknown, (b) it is 
difficult to analyze paths which are spiral and 

not elliptical, (c) the time spans of interest run 

into millions of years, which make both theoretical 
and computer simulation studies difficult to 

undertake, (d) the set of initial conditions for the 

stars in any given galaxy is unknown, (e) M may 

increase significantly, and (f) the effects of the 
millions of other stars in a galaxy are difficult to 

handle mathematically. 

The analysis in the remaining sections is divided 
into the following three phases of galaxy life 

spans:  

 Phase1 – initial movements which are virtually 

elliptical 

 Phase2 – non-elliptical but non-terminal 

movements  

 Phase3 – terminal movements which are often 

circular or hyperbolic 

Phase.1 Virtually Elliptical Movements 

The key idea in Phase 1lies in the application 

ofL1/C1/O, where it is clear that a star of mass m 
gets a small gravitational push over and above 

the NLG force from the black hole center of 

mass M, no matter if m is moving away from M 

or toward it. In all three phases this push is the 
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source of the energy that has perplexed scientists, 

and it occurs no matter if the movement is 
elliptical or spiral or anything else (other than a 

circle).It is noted that it is not assumed here that 

all stars at some point in time get to be in a 
Phase 1state. It may be that some stars enter the 

gravitational field of the given galaxy in a 

Phase 2 state. 

From Part 2 the speed of m increases at all 

points in a Phase 1 orbit with respect to the 

speed determined by NLG, except at those 

points where cos(φ)=0. Thus, it is clear that the 

orbit will not be precisely elliptical. Due to the 

velocity increase, the Phase 1motion will be in a 

direction which is slightly outside the ellipse 

and away from M. Therefore, at the end of each 

orbitat the perihelion the actual motion will be 

at a slight angle to the semi-major axis, with the 

result that the overall path will be a slight spiral. 

As the speed relative to that determined by 

NLG keeps increasing over the length of each 

orbit, the path will become more and like a 

spiral. Also, the speed around each subsequent 

orbit will get more and more uniform because of 

the greater distances from M and the higher 

starting velocities. As a result, on the one hand 

the path should become more and more circular, 

while on the other hand the path should become 

more and more like a spiral. So there would 

seem to be a tug of war going on between the 

spiral and circular movements. 

At any rate, it is argued there are two possibilities 

for what will eventually happen when stars are 

in a Phase 1 state: either the path will become 

circular or it will become a spiral which then 

ultimately escapes into outer space. It is therefore 

conjectured that there exists two mutually 

exclusive and collectively exhaustive regions, 

ΨC(r,v,M) and ΨS(r,v,M), in which a given star 

falling inside ΨC at any time ends up in a 

circular path and inside ΨS a spiral path. The 

mathematical analysis for the solution to this 

complex problem is not yet known to this author. 

In Phase 1 it is noted that the eccentricity 
decreases with each orbit because the velocity 

becomes more and more uniform. Thus, as 

orbits become more and more circular, Δv per 

orbit becomes less and less, and it may very 
well be that all stars that happen at some time to 

be in a Phase 1state stay in that state forever 

and eventually end up moving in a circular path. 
In this case it may be that only those high 

velocity stars that have entered the galaxy in the 

ΨS(r,v,M)region eventually exit into outer space, 
where they initially move in somewhat parabolic 

paths which then become slightly hyperbolic 

due to L1/C1. 

Phase 1 Conclusions in Greater Detail  

In the case of planets circling around a stationary 

star it was shown in Part 2that the orbits are 
virtually, but not quite, elliptical. Extending this 

result to orbiting stars is Conclusion #1listed at 

the end of this section. Also derived in Part 2as 

given by (2.3.5) is that Δv=I(ɛ)GM/(ac),where 
I(ɛ) is a known monotonically increasing 

function of the eccentricity ɛ. This function can 

be calculated by a computer program. As the 
same result is assumed to apply to stars in galaxies 

in Phase 1, this is listed as Conclusion #2. 

From the results which are similar to the 
Mercury study assume a given Phase 1star 

orbits around M along a virtually elliptical path. 

As the star speeds up by a miniscule amount 

over each orbit, the actual path is not precisely 
elliptical. Letting Δvn>0 be the total increase in 

velocity over the n
th
 orbit, then this increase is 

added to the start of the next orbit, which means 
that the velocity during orbit n+1 exceeds the 

velocity during orbit n at all corresponding 

points. This is Conclusion #3. 

From Figure 2 below a graphical analysis is 
offered which shows the early, virtually 

elliptical, orbit in Phase 1.This orbit is actually 

a spiral (the difference is greatly amplified in 
the drawing). Assume the black hole focus is at 

F, and the major axis runs from A to C along 

the x axis. Also assume the star begins the n
th
 

orbit at a point A’ which is almost precisely at A 

(again, greatly amplified in the drawing).The 

overall path is very close to that of an ellipse as 

given by the path ABCDA, but it actually starts 
at A’ and ends at A’’.As the orbit is not a 

perfect ellipse, the actual path begins along the 

dashed line starting at A’ and ends up along the 
dashed line at A’’, where these two points are 

almost precisely at A. It is noted the entire path 

falls outside the ellipse because the velocity 
increases more than it does under NLG. Thus, 

A’’ falls to the left of A’, and the slope at A’’ is 

consequently less steep than at A’. This is 

Conclusion #4. 

 
Figure2. Phase1 (Early Orbit: Amplified at A) 
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Now from Figure 2 let ΔxL=x(A’’)–x(A’)<0be 

the algebraic distance from A’ to the left at A’’. 
Similarly, at the right extreme at C let 

ΔxR=x(C’’) – x(C’)>0be the corresponding 

distance from C’ to the right at C’’, where C’ 
and C’’ are defined in a manner similar to A’ 

and A’’. Then the total increase Δa in the semi-

major axis is2Δa=ΔxR-ΔxL, which implies the 

net increase in the semi-major axis over the 
orbit is given as follows: 

Δa = (ΔxR  - ΔxL) / 2                                   (3.3.1) 

Next, it is conjectured from the overall 
symmetry that: 

|ΔxL| = ΔxR                                                                               (3.3.2)   

Then, from (3.3.1) and (3.3.2): 

Δa = |ΔxR| = - ΔxR                                       (3.3.3) 

From (3.3.3) the center point of the perturbed 

path remains at P. Thus, the perturbed value ɛ* 

of ɛ is found as the ratio of the distance from F 
to P, which isaɛ, divided by the distance from F 

to A’’, which is a+Δa, as follows: 

ɛ* =aɛ / ( a+Δa) = ɛ / (1+Δa / a )              (3.3.4)   

For small Δa, (3.3.4) can be closely 

approximated as follows: 

ɛ* =ɛ(1 -Δa / a )= ɛ- ɛ Δa / a = ɛ + Δɛ       (3.3.5)                                                                   

From (3.3.3) and (3.3.5)it is concluded that Δɛ 
=- ɛ Δa/a. Thus: 

Δɛ/ɛ = - Δa/a < 0                                        (3.3.6)    

As Δɛ<0 in (3.3.6)this puts a limit on the 
amount of velocity increase a star can eventually 

attain when in a Phase 1 state. While it is 

assumed the starting orbit is virtually an ellipse 
in this analysis, the orbit may eventually 

develop into something quite different. This is 

Conclusion #5. 

In a manner similar to the orbit of planets 
analyzed in Part 2, it will be assumed that in the 

n
th

 orbit of a star in Phase1the total velocity 

increase, Δvn, will be positive. This will result in 
a starting velocity in the next orbit being 

increased by Δvn. Thus, the velocity along any 

given orbit will be more evenly distributed than 
in the prior orbit. It is also noted this result also 

applies to Phase 2 and Phase 3 paths, and the 

explanation of this virtual constancy is the 

solution to one of the perplexing and unexplained 
discoveries by Rubin. This is Conclusion #6. For 

example, consider the planet Mercury. It is 

known the speed along a given orbit varies 
considerably around its path. But if a cumulative 

amount were added to all points in that orbit, the 

speed along its path would not vary as much. 

Summary of Phase1 Conclusions 

 Orbits in Phase 1are virtually elliptical, but 

are actually slightly spiral. 

 With respect to the velocity determined by 

NLG, v increases at all points in each orbit 
(except those with cos(φ)=0). 

 At each point in the (n+1)
st
 orbit the speed 

exceeds the speed at corresponding point in 

the n
th
 orbit.  

 The ending slope of the orbit in Figure 2 is 

at a slant to the beginning slope. 

 Phase 1 orbiting stars in galaxies (and planets 

in orbit about a star) move in slightly spiral 

planar patterns. These patterns generally start 

out being almost elliptical, but may develop 
into something decidedly different. 

 The velocity distribution along the (n+1)
st
 

orbit is more constant than along the n
th
 orbit, 

so in this sense the orbits in Phase1 become 
more and more circular. 

Phase.2 Movements (Non-Elliptical but Non-

Terminal) 

In Phase2 the spirals previously covered in 

Phase1 have either grown so large that they are 

no longer virtual ellipses, or these stars have 

entered the galaxy in Phase 2.It is reiterated that 

it may turn out that this phase may not in fact be 

reachable from Phase 1. Instead, the orbiting 

star in Phase 1 may continue to move in a more 

circular path and simply end up orbiting in a 

circle. In any case, the problems with Phase 

2include: (a) the starting conditions vary, (b) the 

time spans in this phase may cover millions or 

billions of years, thereby making explicit formulas 

difficult to derive and computer simulations 

difficult to run, and (c) the spirals tend to get 

bigger and bigger and therefore become less and 

less like ellipses and more and more analytically 

complex. For these reasons the upcoming 

analysis is based on arguments which are more 

intuitive and qualitative, and not mathematical. 

It is hoped that future research will strengthen 

the theory in a more rigorous manner.  

In Phase2 the spirals previously analyzed in 

Phase1 have grown so large or have begun so 

large that they are not virtual ellipses. An 

example situation of one orbit is shown below in 

Figure 3. 
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Figure3. Example of a Phase 2 Orbit 

In this figure a star moves from A around the 

orbit, ABCDA’, where the black hole focus is at 

F. Corollary C1 ensures that the velocity 
increases around the orbit as compared to what 

it would be if only NLG were in effect. On the 

segments AB and DA’ the distance from any 
given point to F is increasing, and therefore the 

attractive force is reduced from what it normally 

would be under NLG. The opposite is true along 

BD. Thus, when the star is moving away from 
F, the gravitational attractive force is less than 

as dictated by NLG, and v.v. when it is moving 

toward F. The net result is the star will speed up 
more than it would under NLG and therefore 

the initial slope exceeds the final slope, as 

shown in the figure. All of this is in agreement 
with corollary C1.Accordingly, it is concluded 

that stars in Phase 2 orbits speed up with respect 

to the prior orbit, but at a lesser and lesser pace. 

The question therefore is whether or not the 
successive spirals will grow forever, or will they 

mature into a circle? As each orbit starts out 

with an overall Δv increase with respect to the 
prior orbit, in this sense they will become more 

and more constant in velocity. The end result is 

therefore as follows: 

Proposition Concerning the Phase 2 End Result 

 Either the ending path will be permanently 

circular 

 Or the escape velocity ve will be reached and 

the path will initially become parabolic and 

subsequently slightly hyperbolic as the star 

moves into outer space. 

It is noted that Rubin’s rotation curves for Phase 2 

spirals show initial velocity increases and then the 

velocities tend to become somewhat constant. 

These features are in agreement with the above 
analysis. Another interesting aspect of galaxy 

formations is that stars sometimes exhibit a 

barbell pattern with two large conglomerations 

at either end of a long “stick”. It is theorized that 
these groupings occur because there are a large 

number of stars attracting one another. Over 

time, a bunch of stars will tend to group and all 
rotate somewhat together. If two major groupings 

occur having essentially similar rotation speeds, 

it is conjectured they should be as far away from 
each other as is possible where the force of 

attraction is least. Thus, if there are two spiral 

groupings with essentially the same rotation 
speeds, they should be at either end of the stick.  

Phase.3 Terminal Movements 

The Phase 3 situation is exemplified in Figure 

4 below 

 
Figure3. Phase 3 Example 

In this figure the movement of a star about a 

black hole at F is shown moderately late in its 

history. Consider the situation at point C, where 

the star is either in Phase 1 and about to enter a 
terminal circular orbit or it is in Phase 2 and 

close to exiting into outer space. In the latter 

case it moves to D and escapes. In the former 
case it moves to A’ and thereafter moves in a 

circle. In either case the star moves faster and 

faster than it would under NLG, but the velocity 
increase may be very small because of the large 

distances and the somewhat circular movement. 

In the case of a circular ending, no further 

increase in energy is attainable. In the situation 
where the star escapes into outer space, the 

initial movement is parabolic. Then, due to the 

large distances, little energy from corollary C1is 
added thereafter, and the resulting movement 

becomes only slightly hyperbolic. Thus, the 

velocity remains somewhat constant in this phase, 
as noted by Rubin. As no formula is offered in this 

work concerning the equation for the movements 

of stars in Phase2, no analysis will be given 

here as to which of the two end states will be 
reached for any particular earlier state. 

However, as the velocity increases in each orbit, 

it is clear that the velocity around any given path 
will become more and more constant. Thus, 

there is less and less potential for a big Δv over 

any given orbit, as observed by Rubin. So it 

comes down to whether or not the exit velocity 
is reached before the constant velocity situation. 
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If there is an eventual escape, assume it occurs 

at some point, say at D in Figure 4. Further 
assume the scalar radius from F to D is re. The 

escape velocity Ve at D is shown, as is the velocity 

component Vx orthogonal to re. It is well-known 
and easily proved that Ve is the speed that yields 

a total energy E=0, where E=U+K, U=-GMm/r, 

and K=mV
2
/2. The required exit velocity is 

therefore given as follows:  

Ve = (2GM/re)
1/2

                                         (3.5.1)    

It is emphasized that the star in question is 

moving in a planar spiral path. If the star were 
moving in a perfect ellipse at D, and if this point 

were at the perihelion where the elliptical 

velocity is maximized, then velocity V0 would 
be given as follows:  

Then velocity V0 would be given as follows, 

where V0 = Vx 

V0 = (GM/Re)
1/2 

                                          (3.5.2)   

From (3.5.1) and (3.5.2) it is seen that: 

Ve / V0 =√2                                                 (3.5.3)    

From (3.5.3) it is noted that the angle between 
the velocity vectors Ve and V0should be 45 

degrees, or about 45 degrees, as is shown in the 

figure. Thus, the following orbital result is 

conjectured: 

Spiral Escape Orbit Conjecture 

It is conjectured that the escape path in the final 

spiral orbit will often lie at or near to a 45° angle 
to re and there after follows a path which is 

slightly hyperbolic but essentially parabolic. 

FINAL CONCLUSIONS 

In this work law L1 is proposed which represents 

a small perturbation in NLG. Also, from L1an 

important corollary C1 is set forth as an immediate 
consequence. Then the dark matter problem is 

resolved from L1/C1, as well as the results of the 

analysis of virtually elliptical orbits in Part 2. It 
is argued the invention of dark matter forces are 

not needed to explain the strange movements of 

stars in galaxies. 

L1 asserts the gravitational force given by NLG 

should be tweaked in a very small way which 

barely affects the motion of objects in the short 

run, but the perturbation can be important 

concerning the motions of planets in solar 

systems and stars in galaxies over very long 

time spans. From C1 it is seen that a body of 

mass m moving in a non-circular path under the 

gravitational influence of a large, essentially 

stationary mass M will receive a small push 

from the gravitational field of M, over and 

above that given by NLG. In particular, m is 

thereby slowed less when it is moving away 

from M and speeded up more when it is moving 

toward it. In either situation there is a relative 

velocity increase over and above what would be 

the case with NLG alone. As a result there is an 

energy gain from the gravitational field of M 

that has nothing to do with dark matter or dark 

energy forces. This energy gain is used to 

explain the dark matter force problem. 

In conclusion, based on L1/C1, arguments are 

made which resolve the dark matter problem as 

due to natural causes. 
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